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This paper reports an analytical and numerical study of the combined Soret and thermosolutal effects on
natural convection in a shallow rectangular cavity filled with a binary mixture. Neumann boundary con-
ditions for temperature and concentration are applied to the horizontal walls of the enclosure, while the
two vertical ones are assumed impermeable and insulated. The governing parameters for the problem are
the thermal Rayleigh number, RaT, the Lewis number Le, the buoyancy ratio u, the solute flux imposed on
the horizontal boundaries j, the Prandtl number Pr, the aspect ratio of the cavity A, and the real number a
(a = 0 for double diffusive convection and a = 1 for the coexistence of double diffusion convection and
Soret effect). For convection in an infinite layer (A� 1), analytical solutions for the stream function, tem-
perature and concentration fields are obtained using a parallel flow approximation in the core region of
the cavity and an integral form of the energy and constituent equations. The critical Rayleigh numbers for
the onset of supercritical and subcritical convection are predicted explicitly by the present model. A lin-
ear stability analysis of the parallel flow model is conducted and the critical Rayleigh number for the
onset of Hopf’s bifurcation is predicted numerically. Also, results are obtained for finite amplitude con-
vection for which the flow and heat and solute transfers are presented in terms of the governing param-
eters of the problem. Numerical solutions of the full governing equations are obtained for a wide range of
the governing parameters. A good agreement is observed between the analytical model and the numer-
ical simulations.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Buoyancy-driven flows, in a differentially heated binary liquid
mixture, can be found in a wide range of situations. In nature such
flows are encountered in the oceans, lakes, solar ponds and the
atmosphere. They also are responsible for the geophysics of plan-
ets. In industry examples include chemical processes, crystal
growth, energy storage, material processing such as solidification,
food processing, etc.. . . For a review of the fundamental work in
this area, see Turner (1985), Huppert and Turner (1981), and
Platten and Legros (1984).

Convection in a multi-component fluid is considerably more
complicated than in pure fluids. This is due to the interplay be-
tween convection, solutal diffusion and thermal diffusion. Also,
depending on how the temperature and concentration gradients
are oriented relative to one another, the dynamics of convection
in such fluids can be very different from those driven by thermal
buoyancy solely. A review of the literature on this topic indicates
ll rights reserved.
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that two types of problems, related with the generation of the sol-
utal gradients, have been considered. In the first type of problem,
called double diffusive convection, the concentration gradients
within the binary mixture are induced by the imposition of given
solutal boundary conditions on the system. In the second kind of
problem, the concentration gradients are not the consequence of
solutal boundary conditions applied on the system. Rather, it is
the heat fluxes imposed across initially homogeneous mixtures
that induce the solutal gradients. This last situation is referred to
as Soret induced convection (cross diffusive problems).

Of particular interest among the studies concerning the first
type of problem, namely double diffusive convection in a binary
fluid, is the pioneering work of Nields (1967). The onset of motion
for thermohaline convection, in an initially motionless horizontal
fluid layer heated from the bottom, was predicted by this author
on the basis of the linear stability theory. The same problem was
reconsidered by Veronis (1968) and Baines and Gill (1969) for var-
ious boundary conditions applied on the layer. Non-linear stability
theories have also been used by Veronis (1965), Huppert and
Moore (1976) and Knobloch and Proctor (1981) to predict the
thresholds for finite amplitude convection. The existence of

http://dx.doi.org/10.1016/j.ijheatfluidflow.2009.11.008
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Nomenclature

A aspect ratio of the enclosure, L0/H0

a integer number as a = 0 or 1
c dimensionless parameter, aj + 1
CS dimensionless concentration gradient in x-direction
CT dimensionless temperature gradient in x-direction
D isothermal diffusion coefficient, m2/s
D0 thermodiffusion coefficient, m2/(s K)
g gravitational acceleration, m/s2

H0 thickness of enclosure, m
j0 solute flux per unit area, kg/(m2 s)
k thermal conductivity, W/(m K)
L0 length of the enclosure, m
Le Lewis number, a/D
N mass fraction of the reference component
NO initial mass fraction of the reference component
DN characteristic mass fraction difference of the reference

component
Nu Nusselt number, Eq. (14)
Pr Prandtl number, m/a
q0 constant heat flux per unit area, W/m2

RaT thermal Rayleigh number, gb0T q0H0
4
=kam

RaTC critical thermal Rayleigh number
�RS normalized solutal Rayleigh number, �RTuLe
�RT normalized thermal Rayleigh number, RaT/720
Sh Sherwood number, Eq. (15)
T dimensionless temperature, Eq. (7)

t dimensionless time, Eq. (7)
DT characteristic temperature difference, q0H0/k
u dimensionless velocity x-component, Eq. (7)
v dimensionless velocity y-component, Eq. (7)
x, y Cartesian coordinates measured from the center of

cavity, Eq. (7)

Greek symbols
a fluid thermal diffusivity, m2/s
bN mass fraction expansion coefficient
b0T thermal expansion coefficient, K�1

m fluid kinematic viscosity, m2/s
u buoyancy ratio, bNDN=b0TDT 0

W dimensionless stream function, W0/a
q density of fluid, kg/m3

x dimensionless vorticity, x0H0
2
=a

Superscript
0 dimensional quantities

Subscripts
o refers to the value taken at the center of the cavity
c refers to critical conditions
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subcritical convection was reported by these authors. Steady con-
vective motion in a fluid layer with an unstable thermal and a sta-
ble salinity stratification has been investigated by Proctor (1981),
using a perturbation theory. It was found that, independently of
the solutal Rayleigh number, finite amplitude convection can occur
at values of the thermal Rayleigh number much smaller than that
necessary for infinitesimal oscillations. The onset of thermosolutal
convection and finite amplitude flows in a shallow cavity, due to
vertical gradients of heat and solute, was investigated analytically
and numerically by Mamou et al. (2001). Both Dirichlet and Neu-
mann boundary conditions for temperature and solute concentra-
tion, applied on the horizontal walls of the system, are considered.
The thresholds for finite amplitude, oscillatory and monotonic con-
vection instabilities are obtained explicitly in terms of the govern-
ing parameters. Results indicate that multiple confined steady and
unsteady states can coexist. Also, the threshold for Hopf bifurca-
tion was determined. The effect of temperature modulation on
the onset of convection in a horizontal fluid layer has been consid-
ered by Bhadauria (2006). On the basis of the linear stability theory
the stabilizing and destabilizing effects of modulation on the onset
of double diffusive convection are discussed.

On the other hand, earlier theoretical investigations on the sec-
ond type of problems, i.e. Soret induced convection in binary mix-
tures, were also concerned with the onset of motion in a horizontal
fluid layer (see for instance Hurle and Jakeman (1971), Platten and
Chavepeyer (1973) and Schechter et al. (1974)). A review of these
studies may be found in the book by Platten and Legros (1984). The
stability of a triply diffusive fluid layer heated from below has been
investigated by Larre et al. (1997). By incorporating the cross diffu-
sion effects in their linear stability of the rest state, the resulting
critical parameters for the onset of convection were found to be
in agreement with experiments. Soret induced convection in an in-
clined shallow cavity, filled with a binary fluid, has been investi-
gated by Ouiriemi et al. (2005). For small enough inclinations
around the horizontal plane the existence of multiple steady states,
for a given set of the governing parameters, was demonstrated
analytically and numerically. Ouiriemi et al. (2006) also investi-
gated the case of a horizontal layer of a binary fluid subjected to
horizontal gradients of heat and solute. The onset of subcritical
convection was predicted for the particular case were the buoy-
ancy forces induced by the thermal and solutal effects are opposing
each other and of equal intensity. The onset of Soret driven convec-
tive motion in a horizontal fluid layer heated from the top has been
analyzed by Kim and Choi (2007), on the basis of the energy meth-
od. The stability limits were obtained as a function of the govern-
ing parameters of the problem.

All the above studies are concerned with the case of convection,
in a horizontal fluid layer, driven either by double diffusion or by
the Soret effect. However, in practical applications, there is no rea-
son why these two effects could not be present simultaneously.
This paper investigates analytically and numerically the influence
of Soret effect on thermosolutal convection within a horizontal
layer of fluid. Neumann thermal and solutal boundary conditions
are applied on the horizontal walls of the cavity. The paper is orga-
nized as follows. In Section 2 the governing equations describing
the problem are derived. Section 3 describes the numerical method
used to solve the problem. An approximate analytical solution, ob-
tained on the basis of a steady parallel flow approximation, is pro-
posed in Section 4. The results are discussed in Section 5 and a
conclusion is presented in Section 6.
2. Mathematical formulation of the problem

Consider the natural convective motion of a binary mixture con-
tained in a shallow two dimensional rectangular cavity. The enclo-
sure, shown in Fig. 1, is of width H0 and height L0. The origin of the
coordinate system is located at the center of the cavity. Neumann
boundary conditions are applied, for both temperature and con-
centration, on the long side walls of the layer. All the boundaries



Fig. 1. Schematic diagram of the physical model and coordinate system.
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are hydrodynamically impermeable. The binary fluid is assumed to
be Newtonian and to satisfy the Boussinesq approximation. The
density variation with temperature and concentration is described
by the state equation q ¼ qO½1� b0TðT

0 � T 0OÞ � bNðN � NOÞ� where
qO is the fluid mixture density at temperature T 0 ¼ T 0O and mass
fraction of the reference component N = NO. b0T and bN are the ther-
mal and concentration expansion coefficients, respectively. The
subscript o refers to condition at the origin of the coordinate sys-
tem. The mass fraction of the denser component of the mixture,
NO, is assumed to be initially uniform.

The phenomenological equations relating the flux of heat ~Q 0 and
matter~J0 to the thermal and solute gradients present in a binary
fluid mixture are given by (see for instance, DeGroot and Mazur
(1969)):

~Q 0 ¼ �krT 0 ð1Þ
~J0 ¼ �qDrN � aqD0N0ð1� N0ÞrT 0 ð2Þ

where a is a real number, the significance of which will be discussed
at the end of this section, k and D are the thermal conductivity and
the molecular (or isothermal) diffusion coefficient of species and D’
the thermodiffusion coefficient. The second term, in the right hand
side of Eq. (2), describes the Soret effect i.e. mass separation due to a
temperature gradient.

In the present study the Dufour effect, i.e. heat transfer driven
by a concentration gradient, is neglected as usual. This parameter
can be important in binary gas mixtures but is negligible in binary
liquid mixture.

The balanced equations for momentum, energy and mass frac-
tion of the denser components are given below in terms of the vor-
ticity x0, stream function W0 and velocity field ~V 0 as:

@x0

@t0
þ JðW0;x0Þ ¼ mr2x0 � b0T g

m
@

@x0
T 0 þ bN

b0T
N

� �
ð3Þ

@T 0

@t0
þ JðW0; T 0Þ ¼ ar2T 0 ð4Þ

@N
@t0
þ JðW0;NÞ ¼ Dr2N þ aD0N0ð1� N0Þr2T 0 ð5Þ

where a is a real number, the significance of which will be discussed
in the following text, x0 = �r2W0, J(f, g) = fygx � fxgy. As usual, we
have: u0 = oW0/oy0, v0 = �oW0/ox0 such that the mass conservation is
satisfied. In the above equations, m is the kinematic viscosity of
the mixture and a the thermal diffusivity coefficient. The boundary
conditions applied on the wall of the layer are:

x0 ¼ � L0

2
; W0 ¼ @W

0

@x0
¼ 0;

@T 0

@x0
¼ 0;

@N
@x0
¼ 0 ð6Þ
y0 ¼ �H0

2
; W0 ¼ @W

0

@y0
¼ 0;

@T 0

@y0
¼ � q0

k
;

@N
@y0
¼ a

j0

q0D
� D0

D
N0ð1� N0Þ

@T 0

@y0

Introducing the following dimensionless variables (primed
quantities are dimensional)

ðx; yÞ ¼ ðx0; y0Þ=H0; ðu; vÞ ¼ ðu0;v 0ÞH0=a; t ¼ t0a=H0
2 ð7Þ

W ¼ W0=a; T ¼ ðT 0 � T 0OÞ=DT 0; DT 0 ¼ q0H0=k; S ¼ N=DN

where DN ¼ j0=qD for double diffusive convection and
DN ¼ �NOð1� NOÞDT 0D0=D for Soret driven convection.

In term of the above definitions, the dimensionless governing
equations for conservation of momentum, energy and species are
given by

@r2W
@t

þ JðW;r2WÞ ¼ Prr4W� PrRaT
@

@x
ðT þuSÞ ð8Þ

@T
@t
þ JðW; TÞ ¼ r2T ð9Þ

@S
@t
þ JðW; SÞ ¼ 1

Le
ðr2S� ar2TÞ ð10Þ

The corresponding dimensionless boundary conditions, namely no-
slip conditions and constant heat and mass fluxes applied on the
boundaries, are:

x ¼ �A=2; W ¼ @W
@y
¼ 0;

@T
@x
¼ @S
@x
¼ 0 ð11Þ

y ¼ �1=2; W ¼ @W
@x
¼ 0;

@T
@y
¼ �1;

@S
@y
¼ �c ð12Þ

where c = (aj + 1).
In the present formulation the particular case a = 0 corresponds

to double diffusive convection for which the Soret contribution
term on the right hand side of the equation of conservation of spe-
cies, Eq. (10), disappears. For this situation, considered in the past
by Mamou et al. (2001), the solutal buoyancy forces result only
from the imposition of the vertical mass fluxes imposed on the hor-
izontal boundaries (oS/oy = �1, Eq. (12)). On the other hand, the
case a = 1 corresponds to Soret induced convection for which the
Soret term on the right hand of Eq. (10) combines with the vertical
mass fluxes imposed on the horizontal boundaries (oS/oy = �(j + 1),
Eq. (12)), to give rise to the solutal buoyancy forces. The particular
condition j = 0 corresponds to a boundary impermeable to the sol-
ute. For this situation, which is usually considered in the literature
(see for instance Ouiriemi et al. (2005, 2006)), it follows from Eq.
(2) that (oS/oy � oT/oy = 0). However, in general, the boundaries
can be permeable to the solute such that the condition j – 0, ap-
plies as considered in the present study. This type of boundary



(a)

(b)

(c)

(d)

Fig. 2. Contour lines of stream function (top), temperature (middle) and concen-
tration (bottom) predicted by the numerical solution of the full governing equations
for RaT = 103, Le = 2, u = 0.05, a = 1 and: (a) j = 5, Wmax = 1.40, Nu = 1.43, Sh = 2.28, (b)
j = 0, Wmax = 1.29, Nu = 1.29, Sh = 3.20, (c) j = �1, Wmax = 1.01, Nu = 1.25 and (d)
j = �4, Wmax = 0.50, Nu = 1.07, Sh = 1.56.

194 I. Alloui et al. / International Journal of Heat and Fluid Flow 31 (2010) 191–200
condition has been considered recently, for the first time, by Benn-
acer et al. (2003).

In Eqs. (8)–(12), one notice the presence of seven governing
parameters, namely the thermal Rayleigh number RaT, the Lewis
number Le, the buoyancy ratio u, the solute flux imposed on the
horizontal boundaries j, the Prandtl number Pr, the aspect ratio
of the enclosure A, and the parameter a, defined as

RaT ¼
b0T gq’H’4

kam
u ¼ bNDN

b0TDT 0
j ¼ j0H0

q0DDN

Pr ¼ m
a

Le ¼ a
D

A ¼ L0

H0

ð13Þ

where a is the thermal diffusivity and m the kinetic viscosity of fluid.
In the buoyancy ratio u it is noticed that, for most of the fluids

at ordinary temperature and pressure b0T is positive but bN can be
positive or negative according to the contribution of the diffusing
components to the fluid density. In the present study bN is sup-
posed positive, i.e. u > 0 for aiding flows and u < 0 for opposing
flows.

The heat and mass transfer rates, expressed in terms of the Nus-
selt and Sherwood numbers, can be computed from the following
expressions:

Nu ¼ q0

kDT 0=H0
¼ 1

DT
ð14Þ

Sh ¼ j0

DDN=H0
¼ c

DS
ð15Þ

where DT = T(0, �1/2) � T(0, 1/2) and DS = S(0, �1/2) � S(0, 1/2) are
the temperature and concentration differences, evaluated at x = 0.
This follows from the fact that DT and DS are x independent such
that they are arbitrary evaluated at the geometrical center of the
cavity. The parameter c in Eq. (15), follows from the fact that it is
required that Sh = 1 when the fluid is at rest (W ¼ 0).
Eqs. (8)–(10), together with the boundary conditions (11) and
(12) then completely determine the problem in terms of the gov-
erning parameters (13). In the following sections both numerical
and analytical solutions are discussed.

3. Numerical solution

The solution of the governing equations and boundary condi-
tions, Eqs. (8)–(10), is obtained using a control volume approach
and SIMPLER algorithm (Patankar 1980). A finite difference proce-
dure with variable grid size is considered for better consideration
of boundary conditions. The power-law scheme, described by Pat-
ankar in his book, is used to evaluate the flow, heat and mass fluxes
across each of the control volume boundaries. A second order back-
wards finite difference scheme is employed to discretize the tem-
poral terms appearing in the governing equations.

A line-by-line tridiagonal matrix algorithm with relaxation is
used in conjunction with iterations to solve the non-linear discret-
ized equations. We consider that convergence is reached whenP

i

P
jjW

nþ1
i;j �Wn

i;jjP
i

P
jjW

nþ1
i;j j

6 10�6 ð16Þ

where the superscripts n and (n + 1) indicate the value of the nth
and (n + 1)th iterations respectively, i and j indices denote grid loca-
tion in the (x, y) plane.

As mentioned above the present problem depends upon the
parameters RaT, u, j, Le, Pr, c, A and a. The numerical results pre-
sented in this study were obtained for A = 6. Such an aspect ratio
is large enough to approximate the parallel flow model describe
in the following section (see Ouiriemi et al. (2006)). Numerical
tests, using various mesh sizes, were done for the same conditions
in order to determine the best compromise between accuracy of
the results and computer time. Thus, most of the calculations pre-
sented in this paper were performed using a 60 � 180 grid. The cri-
teria of convergence are to conserve momentum, energy and
species globally and to insure convergence of pre-selected depen-
dent variables to constant values within machine error at each
time step.
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All the numerical results presented in this study are limited to
water-based solutions, i.e. Pr = 7. As discussed by many authors,
see for instance Trevisan and Bejan (1985), the present solution
is rather independent of this parameter provided that this latter
is of order one or greater. Furthermore, this point is confirmed
by the analytical solution discussed in the following section which,
in its range of validity, is independent of Pr.

Typical numerical results are presented in Fig. 2a–d for
RaT = 103, Le = 2, u = 0.05, A = 6, a = 1 and various values of j. On
the graphs, streamlines, isotherms and isoconcentrates are pre-
sented from top to bottom. For each map of Fig. 2, the increments
between adjacent streamlines, isotherms and isoconcentrates are
Dn = (nmax � nmin)/15, where n stands for W, T and N, and nmax

and nmin are the maximum and minimum values of n, respectively.
The effects of varying the intensity of solute flux j from 5 to �4, on
the strength of convection (Wmax) and the resulting heat (Nu) and
solute transfer (Sh) are observed to be considerable. This point will
be discussed in detail in the following sections. However, Fig. 2a–d
clearly illustrate the fact that for a shallow cavity (A� 1) the flow
in the core of the enclosure is essentially parallel while the temper-
ature and concentration are linearly stratified along the x-direction.
The numerically determined profiles of horizontal velocity u at the
center of the convective cell are compared in Fig. 3 with their ana-
lytical counterparts derived below. The agreement between the
two solutions is seen to be excellent. It is noted from Fig. 3 that
the rest state, within the convective cell, is reached when
j 6 �4:30. This follows from the fact that for the parameters con-
sidered here, namely Le = 2, u = 0.05 and a = 1, the critical Rayleigh
number for the onset of motion is given by Rasup

TC P 1000, as pre-
dicted by Eq. (24).
4. Analytical solution

In the limit of a shallow cavity A� 1, the governing equations
(8)–(10) can be considerably simplified under the parallel flow
approximation W(x, y) �W(y), T(x, y) � CTx + hT(y) and S(x,
y) � CSx + hS(y), where CT and CS are unknown constant tempera-
ture and concentration gradients respectively in x-direction. The
procedure to obtain the analytical solution presented in this sec-
tion has already been described in details (see for instance Mamou
et al., 2001), such that only the final results are presented here.
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Fig. 3. Effect of parameter j on the horizontal velocity profiles for RaT = 103, Le = 2,
u = 0.05 and a = 1. — analytical; d numerical.
Thus, upon substituting the above approximations for W, T and S
into Eqs (8)–(10) and resolving the resulting ordinary differential
equations, under the appropriate boundary conditions, it is found
that the stream function and the temperature and concentration
fields are given by:

WðyÞ ¼ W0ð4y2 � 1Þ2 ð17Þ

T ¼ CT xþ CTW0

15
yð48y4 � 40y2 þ 15Þ � y ð18Þ

S ¼ CSxþ ðaCT þ LeCSÞW0

15
yð48y4 � 40y2 þ 15Þ � cy ð19Þ

with W0 = RaT(CT + uCS)/384.
In the above equations CT and CS are given by:

CT ¼
I1

1þ I2
; CS ¼

ð1� I2LeÞaCT þ cI1Le

1þ I2Le2 ð20Þ

where I1 = 8W0/15 and I2 ¼ 128W2
0=315.

The value of the stream function at the center of the cavity can
be evaluated from the following expression:

W0 ¼ �
ffiffiffi
b
p

Le
d1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

1 þ d2

q� �1=2

;0

( )
ð21Þ

where

d1 ¼ �RT Le½Leþuðc � aÞ� � ðLe2 þ 1Þ
d2 ¼ 4�RT Le2½1þuðcLeþ aÞ� � 4Le2

�RT ¼ RaT=Rasup Rasup ¼ 720

ð22Þ

and b = 315/256. It is noted that the value Rasup = 720 corresponds
to the onset of motion predicted in the past by Sparrow et al.
(1964).

Eq. (21) indicates that five solutions are possible. One of these
solutions, namely W0 = 0, corresponds to the rest state. The first
signs + and – correspond to counterclockwise and clockwise uni-
cellular circulations, respectively. Within the square root, the +
and – signs refer to stable and unstable convection flows, respec-
tively. As indicated by Eq. (21) the rest state is a possible solution.
However it is well known that, above given critical values, a tran-
sition to a convective regime occurs. In the case of a binary mixture
two types of bifurcations are possible.

The first one, characterized by a transition from the quiescent
state to convection regime occurring through zero flow amplitude
(W0 = 0) is obtained at a supercritical Rayleigh number Rasup

TC , which
is predicted from Eq. (21) when the conditions d1 < 0 and d2 = 0 are
satisfied, as

Rasup
TC ¼

720
1þuðcLeþ aÞ ð23Þ

In the present analysis, it can be demonstrated that subcritical
flows with finite amplitude convection occur when d1 > 0 and
d2

1 þ d2 ¼ 0, at a subcritical Rayleigh number given by:

Rasub
TC ¼

720ð1þ LeÞ
Le½Leþuðc � aÞ�2

� ðLe� 1ÞðLe�ucÞ � auðLeþ 1Þ½

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uLeðcLeþ a� cÞðau� Leþ 1Þ

p i
ð24Þ

At the threshold Rasub
TC , the flow intensity is:

W0 ¼ �
ffiffiffiffiffiffiffiffi
bd1

p
Le

ð25Þ

The above results indicates that the occurrence of subcritical is
related to j, Le and u. Thus, from the conditions d1 = 0 and d2 = 0
the following specific conditions for the transition between super-
critical and subcritical flows can be derived in terms of the follow-
ing critical Lewis number Lec:
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Fig. 4. Bifurcation diagrams as a function of �RT for Le = 10, u = 0.05 and various
values of j: (a) flow intensity W0, (b) Nusselt number Nu and (c) Sherwood number
Sh. —, —, analytical; d numerical.
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Lec ¼ �a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4cð�1=�RS þ c � aÞ

q� �
=2c ð26Þ

where �RS ¼ �RTuLe and �RT is given by

�RT ¼
cLe3 þ aðLe2 þ Leþ 1Þ

Le½cðLe2 � 1Þ þ aðLeþ 1Þ�
: ð27Þ

The local heat and mass transfer rates are obtained according to
Eqs. (14), (15), (18), and (19). It is readily found that:

Nu ¼ 10
3

W2
0 þ 2b

W2
0 þ 20

3 b

 !
ð28Þ

Sh ¼ Sh0

1�XSh0ðNu� 1Þ=Nu
ð29Þ

where:

Sh0 ¼
10
3

Le2W2
0 þ 2b

Le2W2
0 þ 20

3 b

 !
and X ¼ 2abðLeþ 1Þ

Le2W2
0 þ 2b

:

The above analytical model is valid asymptotically in the limit
of both A� 1 and Pr� 1. Furthermore, the following discussion
is limited to the case a ¼ 1, corresponding to Soret induced convec-
tion in a fluid layer subjected to the imposition, on the horizontal
boundaries, of a constant solute flux j. The case a ¼ 0, as already
discussed, has been investigated in the past by Mamou et al.
(2001) and is not considered here. It follows that the resulting
problem is now governed by only four parameters, namely the
thermal Rayleigh number RaT , the mass flux j, the buoyancy ratio
u and the Lewis number Le.

Typical bifurcation diagrams are presented in Figs. 4 and 5 for
various values of the solute flux j, for Le = 10 and u = 0.05 and
u ¼ �0:05, respectively. The thermal Rayleigh number is normal-
ized with respect to the critical parameter for the onset of pure
thermal convection, namely Rasup ¼ 720. The curves presented in
graphs are the result of the present analytical model, the solid (dot-
ted) lines corresponding to stables (unstable) branches (see for in-
stance Mamou and Vasseur (1999)). The numerical solution of the
full governing equations, depicted by dots, is observed to be in
excellent agreement with the analytical model.

Fig. 4a illustrates the effect of �RT on W0 for values of 2 P j P �4
when u is greater than zero, namely u ¼ 0:05. Pure Soret induced
convection can be recovered by substituting j ¼ 0 in Eqs. (17)–(22).
For this situation, both thermal and solutal contributions are desta-
bilizing (�RT > 0 and u > 0). As a result the onset of convection oc-
curs at �Rsup

TC ¼ 0:645, Eq. (23), through a pitchfork bifurcation. Upon
applying a solute flux j > 0 on the system both Soret and double dif-
fusive effects contribute to destabilize the system. Thus, as exem-
plified by the curve j ¼ 2, the onset of convection occurs at a lower
supercritical Rayleigh number, namely �Rsup

TC ¼ 0:392. On the other
hand, as the value of j is made smaller than zero, the double diffu-
sion effects induced by the solute flux are progressively stabilizing
the system in opposition with the destabilizing contributions of
the thermal and Soret ones. It is well known that, for this situation,
the onset of motion can occur with finite amplitude convection at a
subcritical thermal Rayleigh number predicted by Eq. (24). The
specific conditions for the transition between supercritical and
subcritical flows, given by Eq. (26), can be expressed explicitly in
terms of the critical solute flux as jc

jc ¼ �
1þu½Le3 þ aðLe2 þ Leþ 1Þ�

auLe3 : ð30Þ

From the above equation it is found that the transition occurs at
jc = �1.1 3 and the resulting curve is plotted in Fig. 4a for reference.
Thus, for values of j below the critical value jc , �Rsub

TC ¼ 1:14 when
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j = �2 and �Rsub
TC ¼ 1:29 when j = �4. These points correspond to sad-

dle-node bifurcations, where two branches emerge. An unstable
branch, represented by a dashed line, connects the subcritical Ray-
leigh number �Rsub

TC to the supercritical Rayleigh number. The other
branch, represented by a solid line, is stable and its existence is
confirmed by the numerical results of the full governing equations.
The curve j = �4 is characterized by the fact that �Rsup

TC ¼ �2:22. A
negative Rayleigh number corresponds to an inversion of the direc-
tion of the heat fluxes imposed on the fluid layer such that the
thermal contributions are now stabilizing. As a result, upon
decreasing �RT below the critical value, �Rsup

TC ¼ �2:22, Fig. 4a indi-
cates the existence of a supercritical bifurcation transition, as
exemplified by the curve obtained for j = �4.

Fig. 5a illustrates the effects of �RT on W0 obtained for
u ¼ �0:05, i.e. when u is smaller than zero. For this situation
the thermal buoyancy forces are destabilizing (stabilizing) for
�RT > 0 (<0). However, since u < 0 it follows that the Soret effects
are stabilizing (destabilizing) for �RT > 0 (<0) while the double
diffusive effects are stabilizing (destabilizing) for j > 0 (<0). The
transition curve, between supercritical and subcritical convection,
occurring at j = �1.1 0, Eq. (30), is plotted on the graph for
reference. For �RT < 0 the occurrence of supercritical convection
is possible. Such a bifurcation is illustrated in Fig. 5a for the case
j = 2.

Figs. 4 and 5 also exemplify the effects of �RT , u and j on the heat
and mass transfer. Thus, it is observed from Figs. 4b and 5b that,
when compared with the pure Soret induced convection situation
(j = 0) the Nusselt number Nu is higher for j > 0, for which the Soret
and double diffusive effects add to the thermal effects to destabi-
lize the layer. Conversely, the Nusselt number is lower for j < 0
for which the destabilizing thermal influences competes with the
stabilizing Soret and double diffusive effects. For very large values
of �RT it is found from the present theory that both Nu and Sh tend
asymptotically (not illustrate on the graphs) towards the limit
Nu = Sh = 10/3, as it can be deduced from Eqs. (28) and (29). This
behavior is a consequence of the particular boundary conditions
considered here.

Results obtained for the mass transfer are depicted in Figs. 4c
and 5c. It is observed that, for both u > 0 and u < 0, the Sherwood
number for Soret induced convection (j = 0) is found to be greater
than obtained for j – 0, i.e. under the combined influences of Soret
and double diffusive effects. However, it is noticed that the signif-
icance of Sh for these two cases is different. The Sherwood number
for double diffusive convection (j – 0), represents the mass trans-
fer across the horizontal boundaries of the layer resulting from
the combined action of convection and conduction. On the other
hand, the Sherwood number for Soret induced convection has
not the same interpretation since the boundaries of the layer are
impermeable (j = 0). Thus, for this situation, Sh is rather related
to the concentration distribution induced by the Soret effect and
by convection.

Another view of the effects of aiding and opposing thermal
and solutal buoyancy forces is presented in Fig. 6a–b in terms
of W0 versus j and �RT , for Le = 10 and u = 0.5 and �0.5, respec-
tively. The case �RT > 0, for which the thermal buoyancy forces
(heat flux applied at the bottom of the layer), have a destabiliz-
ing effect will be first discussed. For this situation, for u > 0
(u < 0), the solutal buoyancy forces induced by the Soret effect
are destabilizing (stabilizing). Similarly, those induced by the
mass flux are destabilizing (stabilizing) for j > 0 (j < 0). Naturally,
the net solutal buoyancy forces result from the addition of these
two contributions .Thus, it is seen that for u > 0, Fig. 6a, that the
onset of motion occurs through a supercritical bifurcation for
j > 0 since both the thermal and the solutal forces are destabiliz-
ing. This situation is exemplified by the curve for �RT ¼ 0:1. On
the other hand, upon decreasing j below zero the contribution
of the mass flux over the Soret effect becomes progressively
more important such that the net solutal buoyancy forces
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become eventually stabilizing. As discussed in details by Mamou
and Vasseur [29], when the thermal and solutal forces are oppos-
ing each other the resulting onset of motion occurs through a
subcritical bifurcation, see the curve for �RT ¼ 2, provided that
the stabilizing agent is the slower diffusing component
(Le > 1).The transition curve between supercritical and subcritical
bifurcations, as predicted by Eqs. (30), namely �RT ¼ 1:069 is pre-
sented in the graph for reference. Similarly, Fig. 6(b) shows that
for u < 0 the transitions curve between supercritical and subcrit-
ical bifurcations, as predicted by Eqs. (30), occurs now at
�RT ¼ 0:957. For lower (higher) values of �RT subcritical (supercrit-
ical) bifurcations are possible for j > 0 (j < 0).In Fig. 6a–b results
are also presented for �RT < 0, for which the direction of the heat
and mass fluxes, in Fig. 1, are reversed. Thus, the heat flux ap-
plied on the top of the layer is now stabilizing and the only
way to observed motion is to create a destabilizing net solutal
buoyancy force. Typical results are presented for �RT ¼ �2, in
Fig. 6a–b, and it observed that the resulting bifurcations are
supercritical since that for this situation the stabilizing agent is
not anymore the slower diffusing component.
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Fig. 6. Bifurcation diagrams in terms of W0 versus j and �RT for Le = 10, a = 1and for:
(a) u = 0.5 and (b) u = �0.5.
5. Linear stability analysis

In this section, the stability of the parallel flow pattern, derived
in the present study, is examined on the basis of the linear stability
theory. It is expected that, upon increasing the intensity of the
steady unicellular flow, this latter will become eventually unstable.
The transition occurs via a Hopf’s bifurcation, at a critical Rayleigh
number, RaHopf

TC , which depend upon the value of the governing
parameters, namely u, j, Le, Pr and a. The procedure for the linear
stability analysis is well known such that only the main points of
the mathematical steps that lead to the solution of the problem
are presented here.

At the very beginning of instability, the global flow can be
assumed to be a superposition of the basic flow [W(x, y) �W(y),
T(x, y) � CTx + hT(y) and S(x, y) � CSx + hS(y), as given by Eqs
(17)–(22)] and an infinitesimal perturbation. Thus, we have:

ŵðt; x; yÞ ¼ ~wðyÞeptþikx

ĥTðt; x; yÞ ¼ ~hTðyÞeptþikx

ĥSðt; x; yÞ ¼ ~hSðyÞeptþikx

9>=
>; ð31Þ

where p = r + ix is the complex amplification rate of the perturba-
tion, k is the real wave number and x the frequency.

Substitution of the sum of the base flow and perturbation vari-
ables, into the set of governing Eqs. (8)–(10), followed by lineariza-
tion to first-order in small quantities, yields the following system
of equations:

PrðD4 þ k4Þ~w� ikD3w~wþ ikðD2 � k2ÞDw~w� ikPrRaTð~hT þu~hSÞD~w

¼ pðD2 � k2Þ~w ð32Þ

ðD2 � k2Þ~hT � ikDw~hT � CT D~wþ ikDhT
~w ¼ phT ð33Þ

1
Le
ðD2 � k2Þð~hS � a~hTÞ � ikDw~hS � CSD~wþ ikDhS

~w ¼ phS: ð34Þ

From Eqs. (11) and (12) the corresponding boundary conditions
are now given

y ¼ �1=2; ~w ¼ 0; D2 ~w ¼ 0; D~hT ¼ D~hS ¼ 0 ð35Þ
y ¼ 1=2; ~w ¼ 0; D2 ~w ¼ 0; D~hT ¼ D~hS ¼ 0 ð36Þ

where D = d/dy.
The perturbed state Eqs. (32)–(34) with the boundary condi-

tions (35) and (36) may be written in a compact matrix form as:

LðkÞY ¼ pMðkÞY ð37Þ

where Y ¼ ½~w; ~hT ; ~hS� is a three-component vector of the perturbation
and L(k) and M(k) are two linear differential operators that depend
on the control parameters RaT, u, Le, Pr , a and j.

The set of Eq. (37) is solved using a finite differences scheme.
The system is discretized using a fourth-order scheme in the do-
main between y = �1/2 and y = 1/2. For N computational points,
the resulting discrete system has 3N eigenvalues that can be found
using a standard IMSL subroutine such as DGVCCG.

The validation of the present stability analysis can be made for
the case considered by Prud’homme and Hung Nguyen (2002) for
the particular case of pure fluid layer (u = 0). The critical values ob-
tained by these authors, displayed in Table 1, are observed to be in
excellent agreement with the results of the numerical procedure
described above.

It is noted that, for the special case W ¼ 0, T = �y and S = �cy,
the present procedure yields the supercritical Rayleigh number
Rasup

TC , for the onset of motion from the rest state.
Fig. 7 illustrates the influence of j on the critical Rayleigh num-

ber �RTC for the case u ¼ 0:2, Le = 10 and a = 1. In this graph the
curves corresponding to the critical Rayleigh numbers, �Rsup

TC and



Table 1
Validation of the numerical code, for u = 0, in terms of RaHopf

TC , kC and xC.

Pr Prud’homme and Hung Nguyen (2002) Present work

RaHopf
TC

kC xC RaHopf
TC

kC xC

50 64275.9 4.626 183.9 64275.86 4.626 183.9
100 65125.8 4.662 187.1 65125.75 4.662 187.1
500 65819.3 4.691 189.8 65819.27 4.691 189.8
5000 65977.0 4.697 190.4 65976.98 4.697 190.4
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�Rosc
TC , are the predictions of the linear stability study of the rest state.

The subcritical Rayleigh number curve corresponding to �Rsub
TC is a

prediction of the parallel flow approximation, i.e. a non-linear the-
ory. Finally, the curves presented for the critical Hopf Rayleigh
number, �RHopf

TC , result from the linear stability analysis of the con-
vective flow predicted by the parallel flow approximation. The
(�RTC , u) plane is divided into four quadrants. Region I (II) corre-
spond to j > �1.6 and �RT > 0 (<0), and IV (III) to j < �1.6 and
�RT > 0 (<0). According to Eq. (23), for j = �1.6, the critical Rayleigh
number �Rsup

TC for the onset of motion is equal to infinity. Also, it is
observed from Fig. 7 that, for j = �1.1, three critical Rayleigh num-
bers, namely the supercritical, subcritical and oscillating Rayleigh
numbers, coexist. The case of a layer heated from below (quadrant
I and IV) will be discussed first. For this situation, since u > 0, the
solutal buoyancy forces induced by the Soret effect and the solute
flux, j, are cooperative with the thermal buoyancy forces provided
that j > 0. For j < 0 the solutal buoyancy forces resulting from the
imposition of the solute flux j are in opposition with those result-
ing from both the heat flux and the Soret effect. Thus, upon
decreasing gradually the value of j below zero, a value will be
reached, namely j = �1.1, where the net solutal buoyancy forces
will counteract the thermal ones. Thus, according to the linear
stability theory in quadrant I, the onset of motion occurs through
a supercrital Rayleigh number for j > �1.1. However, for
�1.6 < j < �1.1, the non-linear parallel flow theory predicts the
occurrence of a subcrital bifurcation. The same type of bifurcation
prevails in region IV where, furthermore, the possible occurrence
of oscillating flows (r = 0) is predicted by the numerical analysis
of the linear stability analysis discussed above. Since the buoyancy
forces induced by the thermal and Soret effects are opposing those
resulting from j < 0 in quadrant IV, the onset of convection occurs
Parallel flow approximation
Linear stability of rest flow
Linear stability of parallel flow solution
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through a subcritical bifurcation. A comparison is made in Fig. 7
between the numerical predictions obtained with this latter, for
the supercritical Rayleigh number, and the analytical solution,
Eq. (23). The agreement between these two results is observed to
be excellent. The case of a layer heated from above (quadrant II
and III) will be now discussed. In region II, for j > �1.6 both the
thermal and the net solutal buoyancy forces are stabilizing such
that the system is unconditionally stable and the fluid at rest. For
j < �1.6 the net solutal buoyancy forces are destabilizing while
the thermal one are stabilizing. As a result, since the Lewis number
is greater than unity, the onset of motion occurs through a super-
critical Rayleigh number and not through a subcritical one. Also,
the numerically determined Hopf’s Rayleigh numbers are depicted
in the graph for reference. A numerical test has been done to verify
the validity of those results. The numerical code developed to solve
the full governing equations has been run for the conditions
u = 0.2, Le = 10, a = 1, A = 6 and RaT � 13,000, i.e. at a Rayleigh num-
ber about 20% over the value RaHopf

TC ¼ 10;782 predicted by the lin-
ear stability theory. The resulting flow was observed to remain
almost parallel, however the core of the cell was found to be
slightly oscillating.
6. Conclusions

In this paper an analytical and numerical study of natural con-
vection in a shallow cavity, filled with a binary mixture, has been
conducted. A constant heat flux was applied on the horizontal
boundaries of the layer while the vertical ones were adiabatic.
The solutal buoyancy forces were assumed to be generated by
the combined action of the Soret effect and the imposition of a con-
stant flux of concentration on the horizontal walls (double diffu-
sive convection). Conditions for both aiding and opposing
thermal and concentration buoyancy forces were examined for a
large range of the governing parameters, namely, the thermal Ray-
leigh number RaT, the buoyancy ratio u, the Lewis number Le, the
Prandtl number Pr, the aspect ratio of the cavity A, the solute flux
j, and the type of convection a. The main findings of the present
investigation are as follows:

1. The onset of stationary supercritical and subcritical convection
have been determined analytically in terms of the governing
parameters of the problem, namely the buoyancy ratio u, the
Lewis number Le, the solute flux j and the constant a .

2. An analytical solution, based on the parallel flow approxima-
tion, has been derived for the case of an infinite layer (A� 1).
The approximate model, despite its relative simplicity, predicts
successfully the various types of flows encountered in the pres-
ent study. This covers aiding flows and opposing flows.

3. A linear stability analysis of the parallel flow solution has been
carried out and the threshold for Hopf’s bifurcations, RaHopf

TC ,
obtained numerically. In this way it has been possible to delin-
eate the boundaries defining the regions of stationary and oscil-
latory instabilities.

A control volume method has been used to obtain a numerical
solution of the full governing equations. A good agreement is ob-
served between the analytical predictions and the numerical
simulations.
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